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Abstract. The linear compressibility of two-dimensional fatty acid mesophases has been determined by
grazing incidence X-ray diffraction. The unit cell parameters of the L2, L

′
2, L

′′
2 , S and CS phases of behenic

acid CH3−(CH2)20−COOH and of the L2 phase of myristic acid CH3−(CH2)12−COOH were determined
as a function of surface pressure and temperature. Surface pressure versus molecular area isotherms were
reconstructed from these measurements, and the linear compressibility (relative distortion along a given
direction for a two-dimensional isotropic applied stress) was determined both in the sample plane and in a
plane normal to the aliphatic chain director (transverse plane). The linear compressibilities range over two
orders of magnitude from 0.1 to 10 m/N and are distributed depending on their magnitude in 4 different
sets which we are able to associate with different molecular mechanisms. The largest compressibilities
(10 m/N) are observed in the tilted phases. They are apparently independent on the chain length and
could be related to the reorganization of the headgroup hydrogen-bounded network, whose role should
be revalued. Intermediate compressibilities are observed in phases with quasi long-range order (directions
normal to the molecular tilt in the L2 or L

′
2 phases, S phase, and could be related to the ordering of these

phases. The lowest compressibilities are observed in the solid untilted CS phase and for one direction of
the S and L′′2 phases. They are similar to the compressibility of crystalline polymers and correspond to the
interactions between methyl groups in the crystal. Finally, negative compressibilities are observed in the
transverse plane for the L′2 and L

′′
2 phases and can be traced to subtle reorganizations upon untilting.

PACS. 61.10-i X-ray diffraction and scattering – 68.10.Et Interface elasticity, viscosity and viscoelasticity
– 68.60.Bs Mechanical and acoustical properties

1 Introduction

The organization and phase transitions of Langmuir films,
i.e. insoluble amphiphilic monolayers at the air/water in-
terface are strongly affected by the dimension 2 [1,2]. Con-
siderable effort has been directed during the last few years
towards the determination of the structure of the different
phases of those systems by grazing incidence X-ray diffrac-
tion (GID) [3–6]. On the theoretical side, many aspects of
the phase transitions can be understood using a recently
developed Landau theory [7,8], and realistic simulations
are now available [9,10].
Beyond the great achievement that was the determina-

tion of the two-dimensional structure of Langmuir films,
a next step, to which simulations contribute, is the under-
standing of the role of intermolecular forces and
conformational defects. Obviously, the elastic properties
of monolayers crucially depend on both potentials and
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defects and their understanding in terms of basic inter-
actions and chain conformations is a challenging goal. Up
to now, only the two-dimensional compression and shear
elastic moduli have been the subject of detailed stud-
ies. For example, the shear modulus has been determined
by directly applying the shear to a large polycrystalline
sample [11], bending a monocrystal [12], or analysing the
shape of Bragg singularities [1,2]. Because of their inho-
mogeneity, the elastic moduli obtained with large poly-
crystalline samples are much smaller than those obtained
with monocrystals. This is also true for the compression
modulus. This was recognized by Bommarito et al. [6] who
determined the compression modulus in different phases
of behenic acid by measuring the surface pressure using
a Wilhelmy balance and the molecular area from GID
data. Another problem shared by all these studies (with
a notable exception [13]) is that the anisotropy of the
monolayer is not considered, preventing a precise under-
standing in terms of microscopic structure. In this study,
we extend the method of reference [6] to determine the
linear compressibilities of two different fatty acids, while
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addressing the anisotropy of the monolayer. This is possi-
ble because the GID measurements allow the determina-
tion of the two-dimensional lattice parameters, the mono-
layer thickness and the molecular tilt.

2 Linear compressibility of a 2D crystal

The surface (volume) compressibility χ of a 2D (3D)
crystal is defined as the relative diminution of its area
(volume) A when submitted to a pressure Π :
χ = −1/A(∂A/∂Π). A linear compressibility can also be
defined along each direction ε as: χε = −1/l(∂l/∂Π),
where l is a length along the direction ε; χε represents the
relative shrinkage of the crystal in the direction ε when
a pressure Π is applied. In a non-isotropic medium, the
linear compressibility depends on the direction, and can
give hints about microscopic phenomena. This has been
successfully applied to polymer crystals [14], where in-
formation about molecular interactions was obtained by
comparing measurements and calculations of the Young
modulus and of the linear compressibility along the differ-
ent crystal axes.
The compressibility can be expressed as a function of

the coefficients of the rank 4 elastic tensor sijkl relating the
strain tensor uij = 1/2 (∂ui/∂xj + ∂uj/∂xi), describing
the relative distortion of the crystal, and the stress tensor
σij [15]:

uij = sijklσkl (1)

(summation over repeated indices is assumed).
The volume compressibility is χ = uii/Π if Π is the

applied isotropic pressure. The linear compressibility in
the direction of the unit vector ε can also be written in
terms of the strain tensor and of the modulus Π of the
applied pressure:

χε = uijεiεj/Π. (2)

The pressure applied to our systems is on average [16] a
2D lateral isotropic pressure, so that, if we take x1 and x2
in the plane of the sample, the only non-zero components
of the stress tensor are:

σ11 = σ22 = −Π. (3)

Hence uij = −Π(sij11 + sij22), and

χε = (sij11 + sij22)εiεj . (4)

Owing to its symmetry properties, the rank 4 elastic ten-
sor sijkl can be represented by a 6 × 6 symmetrical ma-
trix sij with the following correspondence rules: 11 → 1,
22 → 2, 33 → 3, 23 and 32 → 4, 13 and 31 → 5, 12
and 21 → 6 [15].

The crystals under consideration here can alternately
be viewed as very thin three-dimensional crystals if their
properties along the vertical direction are considered or as
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Fig. 1. Unit-cell geometry for an orthorhombic phase (a) and
a monoclinic phase (b). The molecular tilt in (b) is towards
the nearest neighbors (NN) as in the L2 or L

′′
2 phases. φ is the

azimuth angle defining the direction ε in the monolayer plane
in (a) and in the transverse plane normal to the molecular tilt
in (b).

two-dimensional crystals if we are only interested in their
in-plane properties. Of course, the 3D description is more
complete and rich.
All the studied mesophases are either monoclinic (L2,

L′2,L
′′
2) or orthorhombic (S and CS) (cf. Fig. 1). Whereas

the monoclinic elastic matrix has 13 independent coeffi-
cients, the orthorhombic elastic matrix has only 9 inde-
pendent coefficients. If the axes are chosen as indicated in
Figure 1b, the resulting form of the linear compressibility
for these phases is:

χε = (s11 + s12)ε
2
1 + (s12 + s22)ε

2
2 + (s13 + s23)ε

2
3

+ (s15 + s25)ε1ε3. (5)

For orthorhombic (untilted) phases the last term vanishes
because s15 = s25 = 0 due to symmetry arguments [15].
This formula allows one to predict the value of the linear
compressibility in a particular plane. If the plane of the
sample is considered, then ε can be defined by the azimuth
angle φ (cf. Fig. 1a), ε = cosφ x1 + sinφ x2, and:

χε = (s11 + s12) cos
2 φ+ (s12 + s22) sin

2 φ. (6)

For monoclinic phases, where the molecules are tilted from
the vertical by an angle θ, another interesting plane to
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consider is the one perpendicular to the molecular axis
(that we will call the transverse plane). In that plane we
have ε = (cosφ/ cos θ) x1 + sinφ x2 − tan θ cosφ x3 (the
azimuth φ is indicated Fig. 1b), and:

χε = [(s11 + s12)− (s15 + s25) sin θ

+(s13 + s23) sin
2 θ]×

cos2 φ

cos2 θ

+(s12 + s22) sin
2 φ. (7)

This shows that if one is able to measure two linear com-
pressibilities in the plane of the sample, this is sufficient
to yield all the linear compressibilities in that plane, and
to determine the coefficients (s11+ s12) and (s12+ s22). If
the molecular tilt θ can be measured independently, two
linear compressibilities in the transverse plane can be eval-
uated, hence all the linear compressibilities in that plane.
One has therefore access to the coefficient [(s11 + s12) −
(s15+s25) sin θ+(s13+s23) sin

2 θ]/ cos2 θ. If one is able to
evaluate this coefficient in a large enough tilt angle range,
and assuming that the elastic coefficients do not depend
on the tilt angle, then (s13 + s23) and (s15 + s25) can be
obtained.
The two diffraction peaks generally found in GID ex-

periments for orthorhombic or monoclinic phases allow
one to measure two such linear compressibilities in the
plane of the sample, and the tilt angle can be determined
from the Bragg-rod profiles. It is then, in principle, possi-
ble to have access to all these combinations of coefficients.
One has to be very careful when using the word com-

pressibility in other planes than the horizontal plane, be-
cause then the applied pressure is not hydrostatic. The
quantity −1/l(∂l/∂Π) can still be defined, and measured,
but it no longer corresponds to an usual compressibility,
because the displacement dl is not induced by a simple
isotropic pressure Π . As a consequence of this more com-
plicated kind of stress (which contains a shear compo-
nent), it is likely to obtain, as we did, negative values of
χε outside the horizontal plane.

3 Experimental technique

The grazing incidence diffraction (GID) experiments were
carried out at the D41B beamline of the LURE-DCI stor-
age ring in Orsay, France. The λ = 0.1488 nm radiation
was selected using a Ge (111) monochromator. The graz-
ing angle of incidence θi = 2.09 mrad was fixed slightly
below the critical angle for total external reflection us-
ing a mirror. The width and height of the incident beam
were fixed by slits. The diffracted radiation with in-plane
wave-vector transfer qxy was selected using a Soller colli-
mator (opening 1.43 mrad, i.e. 0.0056 Å−1 at 1.5 Å−1),
and detected in a vertically mounted argon-filled position
sensitive detector (PSD) [17].
The Langmuir trough mounted on the diffractometer

was equipped with a movable single barrier, allowing the
compression of the film. The surface pressure Π was mea-
sured using a Whilhelmy balance, and was kept constant

during a scan. The vessel containing the trough was sealed,
pumped and filled with a flow of water saturated helium.
The temperature was regulated to within ±0.5 ◦C using
the water of a large thermal bath.
The amphiphilic molecules used were fatty acids

Cn−1H2n−1COOH, purchased from Fluka (> 99% purity),
and used as obtained. Two different chain lengths were in-
vestigated: behenic acid n = 22 (we shall sometimes use
C22 for it in the following), and myristic acid n = 14 (C14)
in order to get a first insight into the role of chain length
(for a simple homogeneous solid plate the compressibility
is expected to be proportional to the thickness). Behenic
acid was dissolved in chloroform and myristic acid in hex-
ane (both from Merck, analytical grade), to a concentra-
tion of 1 g/l, and approximately 100 µl of the solution was
carefully spread on the water surface.
The film was then compressed (or expanded in some

case, with no noticeable difference) step-by-step, and
Bragg peaks were recorded at each (fixed) pressure step.
The total time required to record the Bragg peaks and
Bragg rods was typically 3 hours per step.

4 Results

4.1 Characterization of the unit-cell parameters

All the crystals investigated in this study have a two-
dimensional rectangular (distorted hexagonal) unit-cell
(Fig. 1). In the L2 (smectic I according to the liquid crys-
tal terminology) and L′′2 (smectic I

′) phases, molecules are
tilted towards one of their six nearest neighbors, whereas
in the L′2 (smectic F) phase they are tilted towards one of
their six next-nearest neighbours. In the more ordered S
(smectic U′) and CS (smectic U) phases, there is no molec-
ular tilt. Phase diagrams of behenic and myristic acids can
respectively be found in references [5,6] and [18,19].
The peak positions measured in the horizontal plane

for the two different fatty acids at different temperatures
are given Figures 2 and 3, where the corresponding phases
are indicated.
For all these phases, only the two lowest-order diffrac-

tion peaks are observed, corresponding to the (11) (de-
generate) and (02) (non-degenerate) Bragg reflections (cf.
Fig. 4). The d spacing of the corresponding diffracting
planes can be very simply derived from the powder-
diffraction peak position qxy (obtained as well as the
hwhm by fitting the peak with a Lorentzian) by:
d = 2π/qxy. Both cell parameters a and b, characteriz-
ing the size of the rectangular cell in the horizontal plane,
are hence precisely determined from the diffraction data.
The molecular area is then given by A = ab/2.
The tilt angle can be extracted from the z dependence

of the diffracted intensity, obtained from the scans in the
vertical plane (the so-called rod-scans), in the following
way. The maximum intensity in the Bragg rod is obtained
when the wave-vector transfer q is perpendicular to the
molecular axis, whose direction is given by the director n.
From the relation q · n = 0 we get: qz = qxy tan θ cosψ
where ψ is the azimuthal angle between the projections of



60 C. Fradin et al.: Linear compressibilities of two-dimensional mesophases

Fig. 2. Bragg peak positions for behenic acid at three dif-
ferent temperatures 5 ◦C, 8 ◦C, and 20 ◦C as a function of
surface pressure. The filled squares indicate the position of the
non-degenerate 02 peak, while the empty circles indicate the
position of the degenerate 11 peak.

q and n in the horizontal plane. Hence the 11 peak, for
which ψ is never equal to π/2, has a non-zero qz compo-
nent in all tilted phases (L2, L

′
2, L

′′
2 ). On the other hand,

the 02 peak has a non-zero qz component only in the L
′
2

phase (ψ = 0), since ψ = π/2 in the L2 and L
′′
2 phases.

The value of qz , which can be obtained from the rod-scans,
coupled to the knowledge of the tilt direction (which can
itself be deduced from the number of peaks having a qz
component), leads to the value of the tilt angle.
The cell parameters and tilt angle deduced from the

peaks positions are given Figure 5 for C22 and Figure 6
for C14.

4.2 Peak widths and range of the positional order

Phases might be classed according to their crystallization
direction(s) [20]. Some of them (the lower temperature
phases: CS and L′′2) are supposed to be 2D crystals, with

Fig. 3. Bragg peak positions for myristic acid at two different
temperatures 5 ◦C and 8 ◦C as a function of surface pressure.
The filled squares indicate the position of the non-degenerate
02 peak, while the empty circles indicate the position of the
degenerate 11 peak.
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Fig. 4. Unit-cell and kinematics of in-plane diffraction from
tilted phases. Dark grey triangles are for a molecular tilt to-
wards nearest neighbors (NN) and light grey triangles for a
molecular tilt towards next nearest neighbors (NNN). The
Bragg planes are indicated as broken lines.
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Fig. 5. Molecular tilt and unit-cell parameters for behenic acid
at three different temperatures 5 ◦C (empty squares), 8 ◦C
(empty circles), and 20 ◦C (black squares) as a function of sur-
face pressure. The dashed lines separating the different phase
regions are only a guide for the eye.

long-range positional order in two directions. Other inter-
mediate phases (S, L′2 and L2h) should have long-range or-
der in one direction (perpendicular to the tilt direction for
tilted phases), but not in the other. Finally hexatic phases
(L2d) obtained for higher temperature have no long-range
positional order at all. It is interesting to note that the
only difference between the phases L2d and L2h is the ex-
istence of a long-range order in one direction for the latter.
The most straightforward way to track long-range po-

sitional order is to consider the Bragg peak widths, in-
versely proportional to the correlation length of the
diffracting planes. The half width at half maximum of
the peaks are plotted in Figure 7. The situation appears
to be different for the L′′2 and CS phases (lower inset):
whereas CS has two resolution-limited peaks, support-
ing the fact that it is, indeed, a 2D crystal, L′′2 has one
resolution-limited peak, and one very narrow but not

Fig. 6. Molecular tilt and unit-cell parameters for myristic
acid at two different temperatures 5 ◦C (squares) and 8 ◦C
(circles) as a function of surface pressure.

resolution limited peak, possibly implying that crystalliza-
tion along a (parallel to the molecular tilt) is not perfect.
The anisotropy in correlation lengths of the intermedi-
ate phases (middle inset) appears clearly with L2h phase,
whose two peaks have very different widths. As for L′′2
phase though, the expected crystallization (along b this
time) is not perfect, since the corresponding 02 peak is
not quite resolution-limited. In the L′2 and S phases, the
anisotropy of crystallization is difficult to determine, since
both peaks correspond to Bragg planes in directions with
no long-range order, and are consequently broad. The in-
crease in correlation length can although be noticed, when
passing from L′2 to S. The hexatic phase (L2d, upper inset)
has inequally broad peaks, showing that though neither
principal direction possess long-range order, one of them
(perpendicular to the molecular tilt) is ordered on a longer
scale.
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Fig. 7. Bragg peak widths in the different phases as a function
of surface pressure. The filled symbols indicate the position of
the non-degenerate 02 peak, while the empty symbols indicate
the position of the degenerate 11 peak. Top: Myristic acid at
5 ◦C (squares) and 8 ◦C (circles); Middle: Behenic acid at
8 ◦C (squares) and 20 ◦C (circles); Bottom: Behenic acid at
5 ◦C. The dashed-dotted lines indicate the mean hwhm for
each phase and each peak, while the dashed line indicates the
instrumental resolution.

4.3 Isotherms

It is interesting to compare the isotherms obtained by de-
termining the molecular area from the trough area and
the quantity of product spread with those derived from
the X-ray measured molecular area. This is presented in
Figure 8 and Figure 9. The precision on the molecular area
is around 1 Å2 per molecule for the macroscopically de-
termined area (because of the errors on the calibration of
the trough area and the quantity of spread product), and
better than 0.1 Å2 per molecule for the X-ray isotherms.
One can see that the pressure rises later for microscop-
ically determined areas, owing to the fact that the film
is inhomogeneous. This point has been stressed in refer-
ence [6]; the actual (X-ray measured) molecular area is
in fact smaller than the assumed molecular area, which
takes into account large surfaces deprived of film. How-
ever, the molecular areas obtained using the trough area
and the spreaded amount are smaller at higher pressure

Fig. 8. Molecular area versus surface pressure isotherms for
behenic acid at three different temperatures 5 ◦C (black cir-
cles and dashed line), 8 ◦C (empty circles and dotted line),
and 20 ◦C (black squares and continuous line). The molecu-
lar area was determined from X-ray measurements (points) or
from spreaded amount and trough area (lines).

Fig. 9. Molecular area versus surface pressure isotherms for
myristic acid at two different temperatures 5 ◦C (empty circles
and dotted line) and 8 ◦C (filled squares and continuous line),
The molecular area was determined from X-ray measurements
(points) or from spreaded amount and trough area (lines).

than those determined by using the X-ray derived molecu-
lar areas: this is due to the loss of amphiphilic molecules,
either in the subphase, through the barriers, or by col-
lapse. For all these reasons, one can see that compress-
ibilities cannot be reliably determined from a standard
isotherm, and that only diffraction data can bring reliable
results. Also, the diffraction data can give access to the
anisotropic linear compressibilities, which is not the case
when using the standard isotherms.
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Fig. 10. Distribution of the different phases as a function of
their transverse cell parameters: L2 (empty circles), L

′
2 (empty

diamonds), L′′2 (empty inverted triangles), S (filled squares),
and CS (filled circles). The solid lines indicate a constant area
and the dashed lines a constant cell geometry.

For behenic acid at T = 8 ◦C, the trough isotherm
shows a L′2 phase that has not been observed in this X-
ray study, possibly because its range of existence is very
small.

4.4 Transverse cell

The packing of the molecules cannot be deduced from our
diffraction data. Though, it is possible to make some as-
sumptions, following the analysis made by Kuzmenko et
al. [20], by considering the cell parameters in the trans-
verse plane, and by plotting the transverse parameter bT
against the transverse parameter aT, as illustrated in Fig-
ure 10. This kind of plot highlights the differences between
phases possessing different molecular packings. Moreover
it will help us to better understand the negative linear
compressibilities obtained in the transverse plane (see be-
low).
Phases are distributed on an arc, the extremities of

which correspond to densely packed phases (with back-
bone ordering), and center to less densely packed phases
(with no backbone ordering). There are two possible back-
bone arrangements for carbon chains [20]: herringbone
(HB) or pseudo-herringbone (PHB) as shown in Figure 11.
Backbone packing strongly influences the size and shape
of the rectangular cell, which is why backbone ordered
phases are distributed on either end of the arc, depending
on whether they achieve HB or PHB packing. Almost all
phases possessing backbone ordering (i.e. in our case L′2,
L′′2 , S and CS) have HB packing. The only known phase

25 o

20 o

PHB

33 o

45 o

HB

Fig. 11. The two different types of molecular packing found
in fatty acid mesophases. The molecular tilt is schematically
suggested by representing a top and bottom methyl group ori-
entated as to indicate the azimuth. The pseudo-herrigbone
(PHB) packing is found only in the L2 phase. All other phases
have herringbone (HB) packing.

with PHB packing is a particular type of L2 phase, the so-
called L2h [20]. The other type L2d possesses no backbone
ordering, and in consequence has a quasi hexagonal cell
(b =

√
3a), which places it in the middle of the arc. Upon

decrease of temperature, the system stays on the arc, pass-
ing from its center (undistorted unit-cell, molecules free
to rotate around their axis), to one of its ends (molecules
with a definite azimuthal position).

The rescaling with chain length of the phase diagram
of fatty acids [18] implies that for a same temperature,
molecules with shorter chains will organize in less dense
phases (i.e. at higher aT and bT, placing them more in the
center of the arc). This is in complete agreement with our
results, which place the L2 phases of C14 almost exactly in
the middle of the arc (making them L2d phases, perhaps
with a faint PHB ordering), and all the phases of C22
towards the extremities. For C14, 4

◦C gives access to
“high temperature phases”, whereas for C22, 20

◦C still
leads to “low temperature phases”.

The first interesting remark about Figure 10 is that
for the same temperature, under compression, the trans-
verse cell roughly keeps its area (deplacement along a line
where the product aTbT is constant), but it jumps from
one end of the arc (PHB) to the other (HB) when passing
from L2h to L

′
2 or L

′′
2 . These two particular phase transi-

tions involve a complete rearrangement of the cell around
its central molecule, since not only the backbone packing,
but also the transverse cell dimensions undergo a discon-
tinuous change (this discontinuity does not exist in the
in-plane parameters a and b). This jump is of particu-
lar interest to us, since it might explain some unexpected
features of the compressibilities we measured, as will be
explained below.

The second interesting remark about Figure 10 is that
the spread of points of the different phases has very dif-
ferent extensions and directions. This can be related to
an anisotropy in transverse compressibility (that will be
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Fig. 12. Polar diagrams of the in-plane linear compressibilities
in the L2 phase of behenic and myristic acids, and the L

′
2, L

′′
2 ,

S, and CS phases of behenic acid. The unit-cell is indicated
by dashed grey lines and the molecular tilt direction by grey
symbols. See also Figure 13 for an enlarged plot of the linear
compressibilities of S and CS phases. The numbers on the axis
only indicate the scale, and the figure is to be read as a polar
diagram.

developed in the next section), and compared with the
anisotropy in crystallization. The L2d phases roughly
extend in the direction of a “constant geometry” line (for
which the ratio b/a stays constant), showing an equivalent
compressibility in both the aT and bT direction. The L2h
and L′′2 phases extend in a direction of constant bT, indi-
cating a stronger compressibility along aT, whereas the L

′
2

and S phases extend in a direction of constant aT, related
to a larger compressibility along bT. For the CS phases,
the extension of the spread of points on the diagram is
almost null.

4.5 Compressibilities

The different compressibilities calculated from our data
are given in Table 1 for the two different compounds and
in the different phases studied. The compressibilities range
from 0.1 to 8 m/N, and, surprisingly, three distinct orders
of magnitude can be clearly identified: around 6 m/N for
the tilted phases, 0.6 m/N for the S phase, and 0.2 m/N
for the CS phase.
Because the different phases are anisotropic, it is in-

teresting to discriminate along the different directions in
order to better understand this hierarchy of compressibili-
ties. The most interesting linear compressibilities are those
along the unit-cell axes a and b with χ = χa+χb, and the
anisotropy is best visualized by building polar diagrams
representing the magnitude of the linear compressibility

Fig. 13. Polar diagrams of the transverse linear compressibil-
ities in the L2 phase of behenic and myristic acids, and the L

′
2,

L′′2 , S, and CS phases of behenic acid. The grey shaded lobes
indicate a negative transverse compressibility. The unit-cell is
indicated by dashed grey lines and the molecular tilt direction
by grey symbols. The numbers on the axis only indicate the
scale, and the figure is to be read as a polar diagram.

along a given direction (i.e. the relative distortion along
that direction under an isotropic 2D stress) as a function of
the angle that this direction makes with the unit-cell axes.
Such polar diagrams can be constructed using the rela-
tions (6, 7) of Section 2. They are represented in Figure 12
(with the same scale) for the different phases we investi-
gated. Polar diagrams make it obvious that most phases
have a highly anisotropic compressibility. In fact, the only
isotropic phase, from the point of view of compressibility
is the CS phase. The other extreme is represented by the
L′′2 phase for which the linear compressibilities χa and χb
differ by two orders of magnitude. The anisotropy might
be traced back either to the anisotropy induced by the tilt
direction (in-plane compressibilities of the L2, L

′
2 and L

′′
2

phases), or to the anisotropy induced by 1D crystalliza-
tion like in the S phase (see also Fig. 13). Let us recall to
this point that tilted phases have their long-range posi-
tional order direction perpendicular to their tilt direction
(transverse L2 compressibilities), and the S phase, perpen-
dicular to the tilt direction of the L′2 phase from which it
originated upon compression.

The central result of this paper which summarizes
these data is Figure 14, where the linear compressibili-
ties along the a and b axes are represented on a log-log
scale. Different regions corresponding to compressibilities
presumably associated with different mechanisms can be
clearly identified on this figure, where the anisotropy is
also most clearly visible. The largest linear compressibil-
ities are observed in the L2 (right, central), L

′
2 (central,

top) and L′′2 (right, bottom) phases in the tilt direction.
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Table 1. Compressibilities (bold font), linear compressibilities and transverse compressibilities in the L2, L
′
2, L

′′
2 , S, and CS

phases for behenic acid at 5 ◦C, 8 ◦C, and 20 ◦C and myristic acid at at 5 ◦C and 8 ◦C in m/N.

Behenic acid (C22) Myristic acid (C14)

20 ◦C 8 ◦C 5 ◦C 8 ◦C 5 ◦C

χ = 6.02± 0.21 χ = 5.04 ± 0.06 χ = 5.05± 0.26 χ = 7.80 ± 0.51

L2 χa = 5.45± 0.28 χa = 4.55 ± 0.13 χa = 4.54 ± 0.29 χa = 6.97 ± 0.47

χaT = 1.02± 0.17 χaT = 1.94 ± 0.44 χaT = 1.63 ± 0.63 χaT = 1.19 ± 0.65

χb = 0.57 ± 0.04 χb = 0.52 ± 0.07 χb = 0.61 ± 0.06 χb = 0.67± 0.07

χ = 5.04± ...

L′2 χa = 0.544 ± ...

χb = 4.597 ± ...

χbT = −1.30± 0.84

χ = 7.52 ± 0.33

L′′2 χa = 7.46 ± 0.33

χb = 0.082 ± 0.026

χaT = −0.72± 0.52

χ = 0.565 ± 0.209

S χa = 0.114 ± 0.178

χb = 0.496 ± 0.261

χ = 0.209 ± 0.013 χ = 0.151 ± 0.296

CS χa = 0.107 ± 0.010 χa = 0.110 ± 0.130

χb = 0.103 ± 0.006 χb = 0.092 ± 0.120

Fig. 14. Distribution of the different phases as a function of
their compressibilities along the two principal directions of the
cell: L2 (empty circles), L

′
2 (inverted triangle), L

′′
2 (diamond),

S (empty square), CS (triangles). The transverse compressibil-
ity in the L2 phase is also represented (filled black circles).
The dashed line indicates isotropic compressibility (χa = χb),
whereas the dotted lines roughly separate the different regions
of compressibility.

The lowest values are observed in some phases and di-
rections where the layer possesses a long range positional
order, that is in both direction in the CS phase (left, bot-
tom), in one direction of the S phase (left, central), and
in one direction of the L′′2 phase. They have to be related
to the compression of already well organized molecular
planes. The intermediate values are found in the trans-
verse plane, in one direction of the S phase and of the L2
and L′2 phases. They correspond to some directions having
no long-range positional order (the b direction of S), and
others generally expected to have it (the b direction of L2
and the a direction of L′2).

One can make abstraction of the effect of tilt by look-
ing at the linear compressibilities in the transverse plane
normal to the molecular axis. A transverse compressibil-
ity χT = −1/AT(∂AT/∂Π), where AT is the transverse
area of the cell, and a tilt compressibility χθ = χ− χT =
tan θ(∂θ/∂Π) can then be defined. χθ describes the part of
the compressibility due to the untilting of the molecules.
If the molecules are tilted along a, one can also write
χa = χaT +χθ, or χb = χbT +χθ if they are tilted along b.
For the orthorhombic phases, the in-plane and transverse
compressibilities are of course equal (χθ = 0). The polar
diagrams resulting from the linear compressibilities in the
transverse plane are represented in Figure 13.

Transverse linear compressibilities are mainly interest-
ing in the tilt direction where they differ from the in-plane
compressibilities. In the L2 phase, linear compressibilities
are reduced in the tilt direction from 5 m/N in the sam-
ple plane to 1 − 2 m/N, i.e. larger but on the order of



66 C. Fradin et al.: Linear compressibilities of two-dimensional mesophases

the intermediate compressibilities mentioned above. More
unexpected is that χbT in the L

′
2 phase and χaT in the L

′′
2

phase are negative.
Finally, it is interesting to note the strong correspon-

dence between linear compressibilities and correlation
lengths: The tilted phases only exhibits very short range
positional order along the tilt direction where the com-
pressibility is very large, the CS phase has 2D long-range
order, and no noticeable (on the diagram) compressibility
in either direction, L2h and S have 1D crystallization, and
show larger compressibilities in the direction where they
are not crystallized.

5 Discussion

We first summarize the theory of elasticity of thin plates
as a basis for the discussion. The four different sets of com-
pressibilities (large compressibilities in the tilted phases,
intermediate compressibilities along the direction without
tilt nor true long-range order, low compressibilities in the
crystal phases, and negative linear compressibilities in the
transverse plane) will then be discussed with the aim of
assigning a molecular mechanism to each of them.
The central result of the theory of elasticity for thin

plates [16] is that the compressibility is proportional to
the plate thickness h: χ = Eh/(1 − σ2p) where E is the
Young modulus and σp the Poisson ratio. Of course this
is not necessarily a realistic model, but the same trends
remain in more realistic approaches: If one is only inter-
ested in the interactions between the chains (which up
to now are believed to be the relevant part of the am-
phiphilic molecules), three essential contributions to the
film free energy must be considered [21]: attractive van der
Waals forces which ensure the film cohesion, the entropy
of conformation defects and their energy (which must be
included to account for phase transitions). It turns out
that all these components roughly scale proportionally to
n [21], the number of segments, and it will therefore also
be the case for the compressibility which is the second
derivative of the free energy with respect to the area.

5.1 Compressibility of the tilted phases

The compressibilities of the tilted phases are the largest
that we observe (> 5 m/N, see Tab. 1). The expectation
that the compressibilities should scale with the segment
number (i.e. a factor of 1.7 between myristic and behenic
acid) is in strong contrast with our experimental observa-
tion that the compressibilities of behenic acid and myristic
acid in the L2 phase at 8

◦C are identical. Indeed all our
results tend to indicate that the compressibility of tilted
phases are remarkably independent of chain length (and
also of film thickness since the compressibilities do not de-
pend on the tilt angle). This, and other experimental ob-
servations detailed below, leads us to propose a reconsid-
eration of the respective roles of aliphatic tails and head-
groups in the physics of amphiphilic films. In particular
we propose here that the compressibility of tilted phases

Fig. 15. Molecular area (filled symbols) and transverse molec-
ular area (empty symbols) as a function of surface pressure.
Circles are for myristic acid at 5 ◦C and 8 ◦C. The L2 phase of
behenic acid is represented by squares at 8 ◦C and triangles at
20 ◦C. Inverted triangles are for the L′2 phase of behenic acid
(at 20 ◦C).

could be due to the elasticity of the hydrogen-bounded
headgroup network. That would also explain the puzzling
observation that the compressibilities of behenic acid in
the L′′2 and myristic acid in the L2 phase at 5

◦C are equal
(and significantly different from their values at 8 ◦C).

Further evidence that the role of headgroups needs to
be reconsidered is as follows:

Firstly, the so-called “universality” of the phase dia-
grams is only relevant for molecules having different chain
lengths but the same headgroup. As soon as different
headgroups are considered like alcohols or esters, signifi-
cant differences appear in the phase diagram topology [22].
Also striking is the fact that in some cases very high pres-
sures can be achieved with molecules that remain tilted
throughout the whole phase diagram, which cannot be
understood if the chains only are relevant [23].

The respective roles of bulk (chains) and surface (head-
groups and interfacial) contribution to the pressure has
been previously discussed in reference [25], but more
specifically around phase transitions.

Secondly, the data of Figure 15 add very interesting
evidence to this interpretation.

Whereas at a given surface pressure, the molecular ar-
eas of behenic acid and myristic acid are very similar,
as one would expect if the interactions between head-
groups are dominant and fix the area, this is not the
case for the transverse area which differ by more than
1 Å2: We measured 18.75 and 19.25 Å2/molecule at re-
spectively 8 ◦C and 20 ◦C for behenic acid and 20.0 and
20.5 Å2/molecule at 5 ◦C and 8 ◦C for myristic acid.
(Note that the reduction in molecular area is roughly
0.5 Å2/molecule when the temperature is decreased by
12 ◦C, or about 1.75 Å2/molecule when the chain length
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is increased by 8 segments, hence leading to the equiva-
lence 1 CH2 ≡ 5 ◦C in good agreement with what is ob-
tained from the transition temperatures in reference [18],
around 5 to 10 ◦C per CH2 group.) Moreover the tilt an-
gle is larger for behenic acid than for myristic acid at the
same pressure in the L2 phase (on the order of 20−25◦ for
myristic acid and of 25−35◦ behenic acid).
If the molecular area is mainly to be fixed by the head-

group interactions, one does expect the same molecular
area whatever the chain length as is observed, and the
differences in cross-section and tilt angle can be under-
stood as follows: Because the van der Waals interactions
are stronger between C22 chains than between C14 chains
due to their larger length, the number of defects is smaller
and their cross-section is also smaller (i.e. the transverse
area as experimentally observed). It is therefore neces-
sary to have a larger tilt angle to achieve the projected
area than for shorter, more disordered chains with a larger
cross-section.
Finally, the temperature dependence of the compress-

ibilities of the tilted phases presents interesting features.
Whereas the compressibility of behenic acid in the L2
phase only slightly decreases from 20◦ to 8◦, the com-
pressibility of myristic acid significantly increases between
8◦ and 5◦ from 5 m/N to 8 m/N (the same happens for
behenic acid but the phase at 5◦ is now L′′2). The same in-
crease is reported in reference [6] for the L2 and L

′
2 phases

of behenic acid. This could be related to the anomalous
properties of water near 4◦ due to the hydrogen bound
network.

5.2 Intermediate compressibilities

The intermediate compressibilities obtained in the L2, L
′
2,

L′′2 and S phases along the directions where there is nei-
ther tilt nor long range order are on the order of 0.5 m/N.
It has been proposed on the basis of a Landau theory of
weak crystallization in references [7,8,20] that the absence
of true long range order could be related to the imper-
fect ordering of the backbone planes. The compressibility
would then be due to the ordering of the molecule posi-
tions. An order of magnitude of the corresponding energy
can be obtained from our data by comparing the com-
pressibilities of the S phase and CS phase along b, since
they both have the same cell geometry and packing (HB),
but the S phase has true long-range order only along a,
whereas the CS phase is a 2-D crystal. If one assumes that
the energy δE necessary to squeeze out the defects is equal
to the elastic energy necessary reduce the cell parameter
b from its large value in the S phase to its low value in
the CS phase, then δE = δb2/χb, using a simple spring
model. δb is the variation of the b/2 parameter of the cell,
that goes from (7.6/2) to (7.4/2) Å for one molecule dur-
ing the transition. This variation is representative of the
transition from a disordered state to a crystallized state in
the b-direction. χb is the linear compressibility along b in
the S phase ≈ 0.5 m/N. With these numbers, one obtains
δE ≈ 2 × 10−22 J, to be compared to the the thermal
energy kBT = 4.1 × 10−21 J, indicating that defects are

rather rare, which is consistent with a coherence length of
≈ 30 interatomic distances in the ill-crystallized direction
of the S phase.

5.3 Compressibility of crystal phases

The lowest compressibilities where obtained in the CS
phase and along the “well crystallized” directions b in the
L′′2 phase and a in the S phase. They are on the order or
smaller than 0.1 m/N. It is interesting to compare these
values to those obtained for 3D polymer crystals, in par-
ticular for orthorhombic polyethylene which has a struc-
ture similar to that of the CS phase. The values of the
linear compressibilities for orthorhombic polyethylene re-
ported in reference [14] are 1.8× 10−10 m2/N along a and
1.4× 10−10 m2/N along b. Let us note that the 2D pres-
sure Π is homogeneous to N/m and not N/m2, which will
cause our elastic coefficients to be in m/N. To be com-
pared to the elastic coefficients of similar 3D materials,
the bidimensional compressibilities will have to be mul-
tiplied by the thickness of the layer (here 2.4 nm). We
obtain ≈ (2.4 ± 0.3) × 10−10 m2/N along a or b in quite
good agreement with the values for polyethylene. The fact
that the compressibility of a film is slightly larger than
that of a 3D crystal can probably be explained by a larger
number of defects. In any case, the compressibility of the
3D polyethylene crystals could be nicely estimated by us-
ing only a pairwise intermolecular potential including a
short range repulsive exponential potential and long range
attractive van der Waals forces for a perfect crystal or-
der with no defects, and one confidently assign the same
molecular origin to the lowest compressibilities of fatty
acids, i.e. repulsive interactions between methyl groups in
a well crystallized solid.

5.4 Negative transverse linear compressibilities

Negative transverse linear compressibilities are only ob-
served in the L′2 and L

′′
2 tilted phases. We propose an ex-

planation for the negative linear compressibilities on the
basis of the transition between PHB and HB packing as
follows: Looking at Figure 16, one can see that the tran-
sition from L2 to L

′
2 or L

′′
2 implies a dramatic change in

the transverse cell parameters (this can also be seen in
Fig. 10). In each case one of the transverse parameters
(bT for L2/L

′
2 and aT for L2/L

′′
2) increases instead of de-

creasing upon compression. They happen to be exactly
the same for which the negative transverse linear com-
pressibilities are observed upon further compression. It is
therefore likely that upon further compression after the
PHB to HB transition the unit cell is still reorganizing in
the transverse plane towards a preferred geometry, imply-
ing negative linear compressibilities.
An important consequence is that the second mecha-

nism presented in Figure 16 (along the diagonal) for the
transition from L2 to L

′
2, corresponding to a 90

◦ change
of the tilt direction, is ruled out, since it would involve a
negative compressibility along aT in the L

′
2 phase, and not
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Fig. 16. Transverse unit-cell geometries found in the tilted
phases L2 (top left), L

′
2 (bottom left and right) and L

′′
2 (top

right). The molecular tilt is schematically suggested by repre-
senting a top and bottom methyl group orientated as to indi-
cate the azimuth. The unit-cell is represented by solid lines.
Note that the scale of the a and b axes has been respected.
Dotted lines represent Bragg planes with long range positional
order. The L2 to L

′′
2 phase transition and two different scenar-

ios for the L2 to L
′
2 phase transitions are indicated by arrows

and the change in unit-cell parameters is given. In the case of
the L2 to L

′′
2 phase transition, the scenario with the broken

arrow can be ruled-out (see text for details); note that a and
b are exchanged during the observed transition.

along bT. This result was already suggested by Brewster
Angle Microscopy [24].

6 Conclusion

The linear compressibility of a two-dimensional fatty acid
crystal has been measured for the first time. Surprisingly,
the linear compressibilities can be nicely divided in 4 sets
depending on their value which is characteristic of the
phase and direction of crystallization, and a different
molecular mechanism could be ascribed to each set. This
lead us in particular to propose to reconsider the role of
headgroups.
The largest compressibilities (10 m/N) are observed in

the tilted phases. They are apparently independent on the
chain length and could be related to the reorganization of
the headgroup hydrogen-bounded network. The interme-
diate compressibilities observed in the directions normal
to the molecular tilt in the L2 or L

′
2 phases and in the S

phase in the direction without true long range order could
be related to the progressive squeezing of defects in those
phases. The lowest compressibilities observed in the solid

a

b

(a)

(c)(b)
Fig. 17. Schematics of the three suggested molecular mecha-
nisms for (a) the compressibility of the tilted phases where the
hydrogen bounded network of headgroups is proposed to play
an important role, (b) the linear compressibility along direc-
tions of imperfect 1D crystallization where positional defects
are important, and (c) the CS phases and directions of per-
fect 1D crystallization where the compressibility is due to the
repulsive interaction between well-crystallized methyl groups.

untilted CS phase and for one direction of the S and L′′2
phases are similar to the compressibilities of crystalline
polymers. They correspond to the interactions between
methyl groups in the crystal. Finally, the negative com-
pressibilities observed in the transverse plane for the L′2
and L′′2 and can be traced back to subtle reorganizations
upon untilting.

Work is in progress in order to solve some remaining
puzzling questions:

– Is it possible to further demonstrate that the compress-
ibility of tilted phases is mainly due to interactions be-
tween headgroups by measuring the compressibility for
different headgroups and observing large variations?

– Does compressibility really decrease with increasing
temperature in those phases and what is the under-
lying mechanism?

– What is the dependence of the compressibility on film
thickness (i.e. chain length) in the untilted phases?

Answering those questions would allow a better under-
standing of the compressibility of two-dimensional Lang-
muir film crystals and open the way for a more quantita-
tive theoretical approach.
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